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are derived by the aid of this integration scheme.

1. Introduction

Optical soliton perturbation is one of the most
sought after areas of research in the field of nonlinear
optics that is applicable to optical fibers, couplers,
metamaterials and metasurfaces. There are sevearl types
of perturbation that are studied in this context using a
variety of mathematical approaches that lead to
meaningful and worthy results in this field [1-25]. While
sevearl models are available to address this, the current
paper will consider the well-known Sasa-Satsuma
equation (SSE) that is basically the perturbed nonlinear
Schrodinger’s equation (NLSE) that is the global model
studied all over in the context of fiber optic dynamics.
Here all of the perturbations are of Hamiltonian type
thus rendering SSE completely integrable for Kerr law
nonlinearity. This paper is thus going to take a fresh look
at the model using one of the well-known mathematical
techniques that is the F -expansion scheme. It will
reveal several forms of soliton solutions namely bright,
dark, singular as well as combo-type solitons. The
results are all derived and discussed in the subsequent
sections.

2. Governing model

The dynamic model for optical soliton perturbation
namely the SSE, with Hamiltonian type perturbations,
that stems out of NLSE is given by [2, 5, 23, 24]:
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where  w(z,t) is a complex variable and

£,8,,5,,S;,5,,Ss, are real parameters. In (1), the first
term represents the evolution of optical pulses, while the
second term, namely the coefficient of S, is the group-

velocity dispersion (GVD) and the coefficient of S,
represents self-phase modulation (SPM) with Kerr law
nonlinearity. From the perturbation terms S; gives the

coefficient of third order dispersion (30D) and finally S,

and Sg are due to self-steepening and nonlinear dispersion.

The perturbation parameter & accounts for quasi-
monochromaticity, a factor that accounts for smallness of the
perturbative effects.

By substituting complex function
w(z,t) =u(z,t)+iv(z,t), where u(z,t) and v(z,t) are
real functions of z and t, into equation (1), we obtained a
coupled nonlinear partial differential equations. We discuss
the existence of a Lagrangian and the invariant variational
principle for SSE. SSE is reduced to a system of a coupled
second order equation and is expressed in the following
form:
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The consistency conditions are expressed in [10,
18], furthermore, the system of split SSE satisfies above

conditions, then we have a functional integral J (U, V)
in the following form as inidicated below:
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where dI" = dtdz. By choosing the boundary on U,

265V —

and V, to be such that the boundary terms vanish, we
get the following Lagrangian L :
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It is deemed necessary to check our calculations, we use
L in the Euler-Lagrange equations:
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which lead to equation (1). In order to solve SSE, we assume
that

w(z,t) =g exp(i(xt —Qz)), &= (kt-az), (6)

where x and Q) are real parameters, ¢(z,t) is the linear
phase shift function with kK and @ are the normalized wave
vector and frequency. By substituting fromequation (6) into
equation (1), we obtained real and imaginary parts of DNLS
equation as follows:
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By integrating equation (8) and taking the constant of
integration to be zero, in order to make the obtained equation
and equation (7) compatible, we get the values of x and QQ
as follows:
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Then equations (8) and (9) are reduced to ordinary
differential equations as follows
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3. Soliton solutions

We implement the improved auxiliary equation
mapping method with to retrieve soliton solutions of
SSE. The advantage of this method is that it proves us
with a new and more general traveling wave solutions
for many nonlinear evolution equations, it provides a
variety of soliton solutions. SSE dynamical equation has
general solution in series form as given by:

o(S) = Za F (§)+Zb F'(&)+

i=-1 (11)
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where
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are arbitrary constants, the value of F (@) and F (6)
satisfy the following two cases

F (&) = Jo,F2(&) + a,F ¥ (&) + o, F*(&);
F () = Ja,F2(&) + a,F*(£) + a,F (8,

12)

2,346

constants and kK and @ are wave length and frequency
respectively. The constant positive integer m is determined
later. By using Egs. (11) and (12) into Eq. (10), we obtained
algebraic system of equations.

Balancing the highest order nonlinear term and the
highest order linear partial derivative term in equation (10)
yields the value of m=2. The solution of equation (10)
takes the form

where & =Kt—wz and o;,i= are arbitrary

P& = 2 +aF () + 4 F )+t
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By inserting equation (13) into equation (10) and
collecting coefficients of

FI(@)F'(0)(j=0,1;i=0123,.. .n), andsetting each
of the coefficients to zero yields an over-determined system
of algebraic equations. Upon solving the system, parameters

a,,8,,8,,b,,b,, C,,d;,d, can be determined as:
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where the sufficient conditions of stability of solutions
as follows:
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>0, 68,0,
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Families of solutions I:

By substituting from equation (14) into equation
(13), we obtain soliton solutions of equation (1):
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where 1 and A are any choices of 1 or —1,and p isan

arbitrary constant, &, >0.
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Families of solutions II: such that Kk°s;(—¢)+k"s,—w >0 a, —4a,as and

N : : . a,>0.
By inserting from equation (15) into equation (13),

we obtain the following soliton solutions of SSE:
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where a; —4a,a and a, <0.

2
COSh(Z(\/Z0+§O))—\/2a4 The solutions list (16)-(25) represents bright, dark,
a; —4a,a; singular as well as different forms of combo optical solitons
as well as singular periodic solutions. Thus, a novel variety
of soliton solutions are reported here, that are derived using

F -expansion scheme for SSE, for the first time.

exp(i(xt — Q2))

(22)
such that af —4a,04 and a, >0. 4, Conclusions
This paper secured a variety of optical soliton solutions
v (20 = (S4 +2$5)(2k3538—a)) for the SSE by the aid of F -expansion scheme. The
s21™ 53(30{51(253 +20, (54 +25, )) respective sufficient conditions of integrability are also listed

for these solitons to exist. The results of this paper are
indeed very encouraging that serves as a way to further

ol —da,o ) future research in this field. The type of nonlinearity will be
_O‘?\/ : o “4S'n(2\1_a2‘9+§°)+a4_8“20‘6 ) extended and generalized to higher order and additional

perturbation terms will be incorporated. These will lead to

2
a4—a2J0H2a2%sin(2 /—0629+§o) additional soliton solutions provided the extended and or
a, generalized model passes the Painleve test of integrability.
exp(i(xt — Qz)), Such results are awaited at this time and will be reported in

future.
and o — 4,0, and a, <0.
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